DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES

I SEMESTER B.Sc.

<u>Paper – I : Differential Equations</u>

Total Teaching Hours: 60

No. of Hours / Week: 06

Max. Marks: 100 (75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

Students that successfully complete this course will be able to:

- ➤ Solve separable, homogeneous, exact, and linear first order differential equations with and
 - without initial conditions.
- ➤ Determine regions of the plane over which a given first order differential equation will have a unique solution.
- > Solve application problems modeled by seperable, homogeneous, exact, linear first order differential equations, and equations reducible to first order differential equations.
- ➤ Determine if a set of functions is linearly dependent or independent by definition and by using the Wronskian.
- Construct a second solution of a differential equation from a known solution.
- ➤ Solve homogeneous linear equations with constant coefficients.
- ➤ Solve non-homogeneous linear equations with constant coefficients using the methods of undetermined coefficients and variation of parameters.
- > Solve simple harmonic motion problems.
- > Solve damped motion problems.
- > Solve forced motion problems.
- > Use power series methods to solve differential equations about ordinary points.
- ➤ Use the method of Frobenius to solve differential equations about regular singular points.
- Find the Laplace transform of a function using the definition.
- ➤ Use the Translation theorems to find Laplace transforms.
- Find the Laplace transform of derivatives, integrals and periodic functions.
- ➤ Use the method of Laplace transforms to solve initial value problems for linear differential equations with constant coefficients.

- Write an nth order differential equation as a first order system.
- ➤ Solve a first order initial value problem using Euler's method.
- > Solve a first order initial value problem using a second order Runge-Kutta method.

II SEMESTER B.Sc

Paper – II : Solid Geometry

Total Teaching Hours: 60

No. of Hours / Week: 06

Max. Marks: 100 (75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

- > Students will be able to identify geometric shapes and prove elementary geometric theorems.
- ➤ Demonstrate knowledge and understanding of plane and solid geometry.
- ➤ Use geometrical skills to solve simple real world problems.
- > Develop technical skills in sketching and drawing.
- > State and find surface areas of prisms, pyramids, cylinders, cones and spheres.
- > Find the volume of common solids.

III SEMESTER B.Sc

Paper – III : Abstract Algebra

Total Teaching Hours: 60

No. of Hours / Week: 06

Max. Marks: 100 (75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of normal subgroups.
- 3. Get the behavior of permutations and operations on them.

- 4. Study the homomorphisms and isomorphisms with applications.
- 5. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 6. Understand the applications of ring theory in various fields.

IV SEMESTER

Paper - IV : Real Analysis

Total Teaching Hours: 60

No. of Hours/Week: 06

Max Marks: 100 (75M- External & 25M – Internal)

Credits: 05

Course outcomes:

- ➤ Define and recognize the basic properties of the field of real numbers.
- > Improve and Outline the logical thinking.
- > Define and recognize the continuity of real functions.
- > Interpret how to know the continuity using the internet.
- ➤ Define and recognize the differentiability of real functions and its related theorems.
- Interpret how to know the differentiability and related theorems using the internet.

Paper – V : Linear Algebra

Total Teaching Hours: 60

No. of Hours/Week: 06

Max Marks: 100(75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

- > Students will be able to compute the inverse of an invertible matrix.
- ➤ Able to compute matrix representation of a linear transformation.
- > Students will be able to find Inverse and higher powers of a matrix by using Cayley-Hamilton theorem.
- ➤ Able to compute Eigen values and Eigen vectors.
- ➤ Able to find whether given transformation is linear or not
- > Students will be able to find the rank and nullity of a Linear Transformation

VI SEMESTER B.Sc

<u>Paper VII A – Laplace Transforms</u>

Total Teaching Hours: 60

No. of Hours/Week: 06

Max Marks: 100(75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

- > Students will be able to calculate the Laplace Transform of standard functions both from the definition and by using tables
- > Students will be able to select and use the appropriate shift theorems in finding Laplace Transforms
- > Students will be able to find Laplace Transforms of some special functions
- > Students will be able to select and combine the necessary Laplace Transform techniques to solve Ordinary Differential Equations

Paper VIII(A1) - Integral Transforms

Total Teaching Hours: 60

No. of Hours/Week: 06

Max Marks: 100(75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

- > Students will be able to know the use of Laplace transform in system modeling, digital signal processing, process control and solving boundary value problems.
- > Students will be able to use Fourier Transform in communication theory and signal analysis, image processing and filters, data processing and analysis.
- > Solving partial differential equations.
- > Solving integral equations by using laplace transform technique.

Paper VIII(A2) - Advanced Numerical Analysis

Total Teaching Hours: 60

No. of Hours/Week: 06

Max Marks: 100(75M – External & 25M – Internal)

Credits: 05

Course Outcomes:

- ➤ By the end of the course the student is expected to recognize and apply appropriate theories, principles and concepts relevant to Numerical Analysis
- ➤ By the end of the course the student will have the ability to compare the computational methods for advantages and disadvantages, choose the suitable computational method among several existing methods
- Implement the computational methods using any of existing programming languages, testing such methods and compare between them
- > Students will be able to solve Ordinary Differential Equations

Paper VIII A3 – PROJECT WORK

- ➤ Project work in Mathematics or in Mathematics related subjects is now very common, especially in applied or statistical topics.
- ➤ Everyone knows, projects are generally beneficial to the students to develop deeply into a topic of interest by finding and studying an article or a part of book on that topic and then writing a report , which should include some mathematical analysis and numerical computations.
- ➤ The project report and presentation make 20 percent of our course grade and more importantly, is our opportunity to learn about a concept of interest that involves some aspect of analysis.